Applying 5S to Processes

The idea that “you always start with 5S”, for better or worse, has been deeply ingrained in the “lean culture” since the late 1980’s. A lot of companies start their improvement efforts by launching a big 5S campaign.

Often, however, these 5S efforts are focused on striving for an audit score rather than focusing on a tangible operational objective.

It is, though, very possible to help bridge the gap by putting the process improvement in 5S terms. By using a language the team already understands, and building an analogy, I have taken a few teams through a level of insight.

For example –

We are trying to develop a consistent and stable work process.

Sort

Rather than introduce something totally new, we looked at the process steps and identified those that were truly necessary to advance the work – the necessary. The team then worked to avoid doing as many of the unnecessary steps as possible. In their version of 5S, this mapped well to “Sort.”

Now we know the necessary content of the work that must be done.

Set in Order

Once they knew what steps they needed to perform, it was then a matter of working out the best sequence to perform them. “Set in order.”

Now we’ve got a standard work sequence.

Sweep or Shine

The next S is typically translated as something like “Sweep” or “Shine” and interpreted as having a process to continuously check, and restore the intended 5S condition.

Here is where a lot of pure 5S efforts stall, and become “shop cleanup” times at the end of the shift, for example. And it is where supervisors become frustrated that team members “don’t clean up after themselves or “won’t work to the standard.”

In the case of process, this means having enough visual controls in place to guide the work content and sequence, and ideally you can tell if the actual work matches the intended work. A deviation from the intended process is the same as something being “out of place.” Then, analogous to cleaning up the mess, you restore the intended pattern of work.

One powerful indicator is how long the task takes. Knowing the planned cycle time, and pacing the job somehow tells you very quickly if the work isn’t proceeding according to plan. This is one of the reasons a moving assembly line is so effective at spotting problems.

Now we have work content, sequence and maybe timing, or at the very least a way to check if the work is progressing as intended. Plan, Do and Check.

I believe it is difficult or impossible to get past this point unless your cleanup or correction activities become diagnostic.

Standardize

The 4th S is typically “Standardize”

Interesting that it comes fourth. After all, haven’t we already defined a standard?

Kind of. But a “standard” in our world is different. It isn’t a static definition that you audit to. Rather, it is what you are striving to achieve.

Now, rather than simply correcting the situation, you are getting to the root cause of WHY the mess, or the process deviation happened.

In pure 5S terms, you start asking “How did this unintended stuff show up here?”

The most extreme example I can recall was during a visit to an aerospace machine shop in Korea many, many years ago. The floors were spotless. As we were walking with the plant manager, he suddenly took several strides ahead of us, bent down, and picked up….. a chip.

One tiny chip of aluminum.

He started looking around to try to see if he could tell how it got there.

They didn’t do daily cleanup, because every time a chip landed on the floor, they sought to understand what about their chip containment had failed.

Think about that 15 or 20 minutes a day, adding up to over an hour per week, per employee, doing routine cleanup.

If you see a departure from the intended work sequence, you want to understand why it happened. What compelled the team member to do something else?

Likely there was something about what had to be done that was not completely understood. Or, in the case of many companies, the supervisor, for his own reasons, directed some other work content or sequence.

That is actually OK when the circumstances demand it, but the moment the specified process is overridden, the person who did the override now OWNS getting the normal pattern restored. What doesn’t work is making an ad-hoc decision, and not acknowledging that this was an exception.

Once you are actively seeking to understand the reasons behind departure from your specification, and actively dealing with the causes of those departures, then, and only then, are you standardizing. Until that point, you are making lists of what you would like people to do.

This is the “Act” in Plan-Do-Check-Act.

Self Discipline or Sustaining

One thing I find interesting is that early stuff out of Toyota talks about four S. They didn’t explicitly call out discipline or sustaining. If you think about it, there isn’t any need if you are actively seeking to understand, and addressing, causes in the previous step.

The discipline, then, isn’t about the worker’s discipline. It is about management and leadership discipline to stick with their own standards, and use them as a baseline for their own self-development and learning more about how things really work where the work is done.

That is when the big mirror drops out of the ceiling to let them know who is responsible for how the shop actually runs.

“True North” – Explicit or Intrinsic?

compassOne of the factors common to organizations that maintain a continuous improvement culture is leadership alignment on an overall direction for improvement – a “True North” – that defines the perfection you are striving for.

Steve Spear describes Toyota’s “Ideal” as:

An activity or a system of activities is IDEAL if it always produces and delivers:

(a) defect-free responses (those that meet the customer’s expectations),

(b) on-demand (only when triggered by the customer’s request),

(c) in batches of one,

(d) with immediate response times,

(e) without waste, and

(f) with physical, emotional, and professional safety for the supplier.

(From The Toyota Production System: An Example of Managing Complex Social / Technical Systems, Steven Spear’s PhD dissertation, 1999, Harvard University)

You (and I) can quibble about some of the semantics, but overall, this is a pretty good list.

Mike Rother (not coincidently, I am sure) puts up something quite similar in Toyota Kata:

…Toyota has for several decades been pursuing a long-term vision that consists of:

  • Zero defects
  • 100% value added
  • One-piece-flow, in sequence, on demand
  • Security for people

Toyota sees this particular ideal-state condition – if it were achieved through an entire value stream – as the way of manufacturing with the highest quality, at the lowest cost, with the shortest lead time. In recent years, Toyota began referring to this as its “true north” for production.

As I have tried to emphasize the importance of a leadership team having a clear sense of “True North” I have noticed that many of them get bogged down in trying to develop and articulate a concrete statement. (This is partly my fault, and I am revising my training materials to reflect what I am writing here.)

What I am realizing is that this is more of an “attractor” than a rule set. Let me explain through a bit of digression.

When we see something, we have an immediate emotional response. Generally it is attraction toward something we see as good (or are curious about); or avoidance of something we see as fearful or dangerous.

We construct a logical reason for that emotional reaction several tenths of a second after that emotional reaction is firmly anchored. Thus, our logic follows, rather than driving, our responses to things. This happens so fast that we are not usually aware, but two people seeing the same thing can respond very differently based on their individual background and experience. I don’t want to dive too deeply into psychology here, so I’ll pull back out of this.

“True North” sets the direction of process improvement because there is high alignment on what kinds of process changes are attractive vs. those which should be avoided. When I say “attractive” I mean “we want to actively move toward them” meaning the organization will expend energy, ingenuity, and resources to do so. This is how continuous improvement is driven.

If I am right, then “True North” is more of an “I know it when I see it” kind of thing than it is a carefully articulated statement.

If I look at other businesses who are (or have been) pretty well aligned with their efforts, I can see the same kind of thing.

For example, though I doubt that it is articulated internally in this way, it has been pretty clear to me “Windows Everywhere” has been something that sets (or set) overall direction within Microsoft. (I’ll admit I don’t have as strong a sense of this as I did in the late 1990’s when my social circles included a number of people who worked there.)

A local hospital does articulate theirs, but it also makes sense: “No wait, no harm.”

Most organizations I have dealt with, though, don’t have a good sense of long-range perfection. They are mired in the details of today, tomorrow, this quarter.

They might have some kind of “vision” or “mission” statement, but often those are paragraphs that are carefully constructed to address constituencies (“Satisfying our customers while delivering maximum shareholder value and being a great place to work, blah, blah”)

Those “visions” though are rarely actively used to guide conversations or decisions, much less continuous improvement.

Since I believe this is a gap these teams need to close if they are to shift toward a continuous improvement culture, I need to improve how I am getting this across to them.

So… the next thing I am going to try is to rework my “True North” instruction and do a better job of framing it as something to actively move toward rather than something to try to logically articulate.

“True North” may be more of a feeling rather than a logical test.

This means that the job of the teacher / practitioner / change agent is to hold on to that “True North” during your coaching until the leaner “gets it” and starts actively seeking solutions that move in that direction.

Obstacles vs. Lists of Tools

I have been noticing a significant linguistic difference between those who still embrace the “implement the tools” paradigm, and a much smaller (but growing) group are are adopting the PDCA thinking structure as a framework for everything else.

It comes down to how a problem is stated.

We were looking at an operation with a lot of variation from one team member to another, both in terms of performance, and actually, what precisely was being done.

When asked what the obstacle was, the immediate reply was “Lack of standard work.”

While this may have been true, it is not a statement of the problem. Rather, it is defining the problem as “lack of a specific solution.”

This may seem to be an semantic discussion, but consider what the responsible supervisor hears, and interprets, from these two statements:

“There isn’t any standard work.”

or

“There is a lot of variation from one operator to another.”

In the first case, we are telling the supervisor what she isn’t doing, hasn’t done, needs to do. It isn’t even teaching.

In the second case, we are pointing out something that we can both agree on. I haven’t even said it is a problem, and honestly, in some cases it might not be (yet). It is a simple observation.

If, then, we agree that this variation is leading to some undesirable effect, then we can talk about countermeasures. That might include trying to capture a baseline, teach it to a few of the team members, and see if that helps. We can name it later.

Which of those approaches is more likely to enlist the support of the supervisor, which is more likely to put her on the defensive?

Lean thinking is not a checklist of which tools are in place. It is a step-by-step convergence on smoother flow, dealing with observed obstacles and problems.

This isn’t to say that the coach doesn’t have intimate knowledge and experience with flow, with standard work, and everything else. But the approach must be respectful of the people who are struggling with the real world issues every day. Saying “You need to implement standard work” isn’t helpful no matter how much logical justification is wrapped around it.

Teaching someone to observe the impact of variation on the process might seem slower, but it will get them there much faster because it engages their curiosity.

Some PDCA Cycles

We had five sequential operations. Although the lowest repeatable times for each were well within the planned / target cycle time, there was a lot of variation.

Though Operation 3 was working pretty continuously, Operations 4 and 5 (downstream) were getting starved on occasion, and the empty “bubble” was working its way to the output. The exit cycles, therefore, were irregular enough that they weren’t making rate.

The team set their target to stabilize Operation 3, with the expectation that doing so would smooth out the overall exit cycles.

To that end, they went back and started to study Operation 3 in a little more detail to better understand the obstacles that were impacting the Team Member’s ability to complete the work smoothly.

Then a wrinkle – a different team member was now doing the work, and his cycles were faster.

This actually was an opportunity. Why is one Team Member faster than another?

Their hypothesis was that the faster Team Member had some knack or technique, that enabled him to perform more consistently. And indeed, he did have a few tricks.

So the first experiment was to capture this work cycle in a Job Breakdown, then see if using Job Instruction and teaching it to the first Team Member they could duplicate the results of the second.

Then another wrinkle. The first team member was back on the job. Armed with the knowledge gained by breaking down the steps, key points and reasons for Team Member #2, they took more baseline data from Team Member #1 to set up their experiment.

…only to discover that Team Member #1 was also doing things that #2 didn’t do.

One of those things was unbending a part that was sometimes being bent by an upstream operation.

It seems that #2 was just passing those along as he got them. With that background, the conversation went something like this:

“What obstacle are you addressing?”

“The manual rework in Operation 3 is adding variation and extending his cycles.”

“What experiment are you running next?”

“We think the jig being used in Operation 1 is a bit undersize, allowing the part to deform. We are going to adjust the jig to the proper size.”

“What do you expect from that?”

“We expect to eliminate bent and deflected parts, and see more consistency in Operation #3’s cycles.”

Then they tried it. Skipping ahead a bit:

“What actually happened?”

“The parts are now more consistent, and there Operation #3 has a lot less variation, and is running closer to the planned cycle time… except that now he is waiting on parts from the upstream operation.”

“Huh. What is happening there? What did you just learn?”

“Well, it looks like Operation #3’s variation was masking inconsistent delivery from Operation #2. That team member is operating in small batches, then turning and delivering 3-5 parts at a time. When there was a lot of variation in Op #3, those parts were kind of buffering everything. Now he is working more consistently and faster, and ends up waiting on parts.”

“Because of the layout, the Operation #2 Team Member has to turn to his left and pass the parts behind him. He said he batches so he doesn’t have to turn so often. So what we are thinking is we want to…”

“Hang on, I want to stick to the structure so you guys can practice hearing and responding to it… So – what is your next step?”

“We talked to the team members, and they all agree that if we straighten out that bend in the layout, this will be a lot easier on them, so we are going to do that during the lunch break.”

“And what do you expect from that?”

“Operation #3 will get his parts one-by-one, as they are ready, and won’t have to wait on them.

“Great, so when can we see what you have learned?”

“Give us about 30 minutes after lunch break is over.”

You can probably surmise that things smoothed out a bit.

Then they went back to capturing a hybrid of the best practices of both operators in a job breakdown. At this point, the Team Members were genuinely interested in how they were doing, and both were quite open to learning the “tricks” of the other, so “Get the worker interested in learning the job” had pretty much been done.

A lot was learned over a few hours.

Reflection:

The “real world” is often quite a bit messier than the real world. There was actually a lot more dialog than I reconstructed here to keep the “learners” on track and focused on their stated target vs. resorting to an action of “improvements.”

In addition, merely beginning to work on one obstacle revealed enough information that they were dealing with a different underlying problem.

At another point in the week, they also believed they saw a need for more consistent part presentation. I happened to agree with them, but…

when pressed for what result they expected, the initial response was “The parts will be consistently presented.”… but what does that have to do with your target?

That was tough because, at the time, they were looking at the cycles of the 2nd operator that were, actually, pretty consistent, and lost sight of the fact that they were working on reducing the overall variation of output from that position.

They had a very hard time articulating why consistent part presentation would address the issue, even though they knew it should.

I think this is the result of years of conditioning that the “tools” – such as consistent part presentation – are good for their own sake, without really examining the underlying problems and causes that are being addressed.

If we lean practitioners are scratching our heads wondering why people don’t see this stuff helps, it would be a lot easier to deal with if we could point to the issue being addressed at the moment.

More tomorrow.

High-Speed Automation

While we lean practitioners seem to have earned a reputation of distain for high-speed automation, industries like mass production consumables, and the food and beverage industry, would not be viable without that approach.

These plants are capital intensive, and the main focus of the people is to keep the equipment running. I hinted at some of these things a couple of years ago from the Czech Republic.

Here are some more recent thoughts.

 

Even though it is about equipment, it is still about people.

This is not a paradox at all. People are the ones who are getting cranky equipment to run, scurrying about clearing jams, clearing product that got mangled. Until you have a “lights out” plant, people are critical to keeping things running.

Robust problem solving and improvement skills are more critical.

In a purely manual world, you can get away with burying issues under more people and more inventory.

With interconnected automated equipment, not so much. The hardware has to run. It all has to run or there is no output.

How the organization responds to a technical problem makes the difference between quickly clearing the issue, or struggling with it for a couple of hours while everything else backs up.

This is where standard processes are critical, not only to short-term success, but also to capture new information as it is learned. This is the “chatter as signal” issue I have written about a couple of times.

Quoting from the above link:

Most organizations accept that they cannot possibly think of everything, that some degree of chatter is going to occur, and that people on the spot are paid to deal with it. That is, after all, their job. And the ones that are good at dealing with it are usually the ones who are spotlighted as the star performers.

The underlying assumptions here are:

  • Our processes and systems are complex.
  • We can’t possibly think of and plan for anything that might go wrong.
  • It is not realistic to expect perfection.
  • “Chatter is noise” and an inevitable part of the way things are in our business.

Those underlying assumptions say “Our equipment is complicated and difficult to get adjusted. All we can do is try stuff until it runs.”

That assumption actually lets people off the hook of actually understanding the nuances of the equipment; as well as letting them off the hook of a disciplined approach to troubleshooting. The assumption essentially says “We can’t do anything about it.”

A dark side of this designed ignorance is that the only thing leaders are really able to do is hover about and apply psychological pressure to “do something” or, at best, contribute to the noise of “things to try.”

Neither of those is particularly helpful for an operator who is trying to get the machine running. Both of those actually have a built-in implication that the operator (1) Does not know how to do his job or (2) Is somehow withholding his expertise from the situation.

But we get a different result from the alternative assumptions:

On the other hand, the organizations that are pulling further and further ahead take a different view.

Their underlying assumptions start out the same, then take a significant turn.

  • Our processes and systems are complex.
  • We can’t possibly think of and plan for anything that might go wrong.
  • But we believe perfection is possible.
  • Chatter is signal” and it tells us where we need to address something we missed.

What does this look like in practice?

A known starting condition for all settings, that is verified.

A fixed troubleshooting checklist for common problems (that starts with “Verify the correct initial settings).

What things should be verified, in what sequence? (Understand the dependencies).

If a check reveals an issue, what immediate corrective action should be taken?

I would also strongly recommend using the format of a Job Breakdown (from TWI Job Instruction) for all of this. It is much easier to teach, but more importantly, it really forces you to think things through.

Of course, the checklist is unlikely to cover everything, at least at first. But it does establish a common baseline, and documents the limit of your knowledge.

The end of the operator checklist then defines the escalation point – when the operator must involve the next level of help.

It takes robust problem solving skills (and willingness to take the time to use them) to develop these processes; but doing so can save a mountain of time that pays back many times over.

The alternative is taking the time to mess with things until it sort of works, and never really understanding what was done or what had an effect – every single time there is an issue.

Cry once, or cry every day.

What does this have to do with improvement?

The obvious answer is that, if done well, it will save time.

The more subtle effect is that it sharpens the organization’s knowledge base, as well as their ability to really understand the nuances of the equipment. But this must be done on purpose. It isn’t going to happen on its own.

By getting things up and running sooner; and reducing the time of stoppages; it increases equipment capacity.

But more importantly, all of this increases people capacity.

It gives people time to think about the next  level of problems rather than being constantly focused on simply surviving the workday. Of course you need the right organizational and leadership structure to support that.

5S With Purpose

The team was driving toward a consistently executed changeover process as a target condition.

In the last iteration, the process was disrupted by a scrapped first-run part. The initial level cause was an oversize bit in the NC router resulting in an out-of-spec trim and oversize holes.

This occurred in spite of the fact that there are standard tools that are supposed to be in standard locations in the tool holders on the back of the work pallet.

Upon investigation, the team found:

  • The previous part had a programming error calling out the oversize tool from the wrong location.
  • All of the operators were aware of this, and routinely replaced the “standard” tool with the one the program required.
  • After that part was run, the standard condition had not been restored.
  • There was likely a break in continuity between operators here, but that was less clear.
  • The two bits are only 1/8 different, and hard to distinguish from one another across the 10 feet or so of the work pallet.

The team addressed the programming error, but among the thousands of other programs out there, they were reasonably certain that there were other cases where the same situation could be set up.

They wanted to ensure that it was very clear when there were non-standard tools in the standard locations.

Their initial approach was to create a large chart that called out which tools were to be in which holders. Their next experiment was to be to put that chart up in the work area.

 

“What do you expect to happen?”

That turned out to be a very powerful question. After a bit of questioning, they implied that the operator was to verify that the correct tools were in the standard positions before proceeding.

“How does this chart help them do that?”

They can see what the standard is.

“Don’t they all already know what the standard is?”

Yes…..

“So how does this chart help them do that?”

Now, to be clear, the conversation was not quite this scripted, but you are getting the idea. The point was to get them to be specific about what they expected the operator to do, and to be specific about how they expected their countermeasure to help the operator do it.

One team member offered up that maybe they could color-code the standard tools and their holders so it would be easy to check and easy to see if something was off-standard. That way, even IF the situation came up where the operator needed to deviate from the standard, anyone could easily see what was happening.

(I should add that they have already put an escalation process into place that should trap, and correct, these programming errors as they come up as well.)

The tools were color-coded over night, and in place the next day.

Color coded tool holders.

This wasn’t a “5S campaign,” nor is there an audit sheet that tries to measure the “level” of visual control in the work space.

Rather, this is using a visual control to visually control something, and reduce the likelihood of another scrapped part (and therefore, disrupted changeover).

Over the last week, the work cell has been improving. When things are flowing as they are supposed to, changeovers are routinely being done within the expected time.

But there are times when their standard WIP goes low; there are times when someone gets called away; when the flow doesn’t go as planned. When those things happen, they get off their standard.

The next countermeasure is to document, clearly, the normal pattern for who works where, for what inventory is where. Then the next question is “How can anyone verify, at a glance, whether or not the flow is running to the normal pattern?”

More visual controls. Ah.

Now we are seeing the reason behind 5S. It will come in to that work area, step by step, as the necessity to make things more clear arises.

Toyota Kata at lean.org

Mike Rother sent out an email today pointing out that the Lean Enterprise Institute’s web site now has a Toyota Kata page.

I believe this is a significant event for the lean community as a whole, as well as for the LEI.

As many of my regular readers know, I have maintained the view that the LEI had not kept up with the current state of knowledge about what makes “lean” work.

Back to Basics

An Open Letter to John Shook

When the LEI published Kaizen Express in 2009, I wrote a review that addressed this topic. The review had two parts. One part about the book itself, and the other about the context of the community’s knowledge at the time.

I think it is a great book, for 1991.

But this is 2009. So while Kaizen Express is a welcome refresher of the mechanics, those mechanics are, according to the current standing theory, built upon a foundation of something that Kaizen Express, and for that matter, the LEI has not, to date, addressed. What is missing, in my view, is how the tools and practices outlined in Kaizen Express and its predecessors actually drive daily continuous improvement that engages every team member in the process. [bolding added for emphasis here]

When Toyota Kata was published, I believe it closed that gap for the community at large. But I felt a bit of irony that while Mike Rother had co-authored the LEI’s flagship workbook Learning to See, Toyota Kata was not only outside the LEI’s community at the time, it was hardly acknowledged to exist.

The purpose of this post is to acknowledge that a significant step has been taken: For the first time in many years, the LEI is embracing material that they did not originally publish.

From my perspective, this looks like a turning point away from the path of irrelevance.

Failure as Success

A great insight from a client today.

The target condition at this point is simply to establish some degree of transparency of the current condition on a status board without having to resort to probing questions to elicit what is working, and what is not.

The observation was:

“We’ll know we are succeeding when we see a failure.”

In other words, “no problem is a big problem” but I think this says it just as well.

Learning vs Teaching

Coincidently my experience this week ties in nicely to the last post.

I have a couple of teams working to develop pull systems through their respective work areas.

The conventional approach (I suppose) is a lot of PowerPoint about kanban, some exercises, developing a future state value stream map, then devising an implementation plan.

An alternative approach is to have a small group of experts design the system.

Most of the time this results in a fairly arduous process of wringing out the issues once the system goes live. If the team isn’t prepared for that, it is likely the system will come apart as people bypass it out of necessity to get the work done.

What I am watching this week is more organic.

First, we covered a few fundamentals about flow and pull signals in a simple demonstration of “build and push” vs. one-piece-flow with a visual limiter on work-in-process inventory. They saw the throughput, productivity, stability, visibility all increase while lead time dropped by an order of magnitude. That took about an hour.

The team then set up a tabletop simulation of their existing work flow, and exercised it a few times to confirm that it is a fair representation of the way things actually work today. In doing so, they gain more understanding of the current condition because they have to replicate it.

They then set out to make their far more complex real-world situation work more like what they saw in the demonstration. To help them get started, they were given some suggestions about a few things to try, and some basic principles and rules.

Some of that advice included restricting changes to a single factor at a time, and predicting what would happen, then trying it. If you find yourself speculating, or discussing alternative speculations, try it and see.

Two days into it, the teams have full-blown multi-loop kanban working, and are devising experiments to learn how the system responds to things like machines going down, unpredicted shifts in product mix, and other things they normally need to respond to.

They are exploring not only the mechanics and the rules, but the dynamics of the process in operation. They are learning what “normal” looks like in the face of abnormal conditions. They are testing the boundaries – where and when does it break, and what does “broken” look like vs. something that will recover on its own.

They are figuring out how to make it more robust, without making it cumbersome or too complicated.

They are gaining confidence and a deep understanding by iterating through ever more complex scenarios.

The people doing this are the ones who will be working IN the system in the future. We are seeing who emerges as thought leaders.

What they have right now – mid week – is a crystal clear view of their target condition, and they are very confident that they can make it work in their real world. Are there unknown issues? Sure. There always are. Translating this to the real world will involve more cycles of iteration. Only now they know exactly how to do those iterations because they have practiced dozens of times already.

This is actually less about kanban than it is about learning how to gain knowledge about something previously unknown.

It is pretty cool to watch, and a lot more fun (for everyone) than just implementing a process designed by someone else. Even the skeptics get drawn in when people are working hands-on to try to make something work.

Oh – and I’m really glad this process works because that saves me from having to know the answers.